ML์œผ๋กœ ์ธํ•œ ๋ณ€ํ™”?

  • ์ด์ „์—๋Š” ๋ฐ์ดํ„ฐ์™€ ๊ทœ์น™์„ ์ฃผ๋ฉด ์ •๋‹ต์ด ๋‚˜์˜ค๋Š” ์‹์œผ๋กœ ์ฝ”๋“œ๋ฅผ ์ž‘์„ฑํ•˜์˜€๋‹ค.
  • ํ•˜์ง€๋งŒ, AI๋ฅผ ์ด์šฉํ•˜๋ฉด ๋ฐ์ดํ„ฐ์™€ ์ •๋‹ต์„ ์ฃผ๋ฉด ๊ทœ์น™์ด ๋‚˜์˜ค๋Š” ๋ฐฉ์‹์œผ๋กœ ์ฝ”๋“œ๋ฅผ ์ž‘์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค.

 

AI๊ฐ€ ์™„๋ฒฝํ•œ ์ •๋‹ต์„ ๋งž์ถ”์ง€ ๋ชปํ•˜๋Š” ์ด์œ ?

  • ๋ฐ์ดํ„ฐ์˜ ์ˆ˜๊ฐ€ ์ ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. (ํ˜„์žฌ์˜ ํŒจํ„ด์ด ์ด๋Ÿฌํ•˜๋”๋ผ๋„, ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ๊นŒ์ง€ ์ด๋Ÿฌํ•œ ํŒจํ„ด์„ ๋”ฐ๋ฅธ๋‹ค๋Š” ๋ณด์žฅ์ด ์—†๋‹ค)
  • ๋‚˜์˜ฌ๋ฒ•ํ•œ ์˜ˆ์ธก๊ฐ’์„ ๋‚ด๋†“๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. (AI๋Š” ํ™•๋ฅ ์ ์œผ๋กœ ํ•™์Šตํ•œ๋‹ค)

 

loss์™€ optimizer์˜ ์—ญํ• ?

  • loss๋Š” ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๋„์ถœ๋œ ํ˜„์žฌ์˜ ๊ทœ์น™์ด ์–ผ๋งˆ๋‚˜ ์ข‹์€์ง€, ๋‚˜์œ์ง€๋ฅผ ์ธก์ •ํ•˜๋Š” ์—ญํ• 
  • optimizer๋Š” ๋‹ค์Œ์˜ ๊ทœ์น™์ด ํ˜„์žฌ์˜ ๊ทœ์น™๋ณด๋‹ค ๋‚˜์•„์ง€๋„๋ก ๊ฐœ์„ ํ•ด์ฃผ๋Š” ์—ญํ• 

 

tensorflow์—์„œ ํ•™์Šต๊ณผ์ •

  1. train data, test data ์ค€๋น„
  2. ๋ชจ๋ธ ๋งŒ๋“ค๊ธฐ (layer ์Œ“๊ธฐ)
  3. ๋ชจ๋ธ ์ปดํŒŒ์ผ (loss, optimizer ์ง€์ •ํ•˜์—ฌ compile)
  4. ๋ชจ๋ธ ํ•™์Šต (fitํ•˜์—ฌ train data ํ•™์Šต)
  5. ๋ชจ๋ธ ํ‰๊ฐ€ (predictํ•˜์—ฌ test data๋กœ ๋ชจ๋ธ ํ‰๊ฐ€)

 

import tensorflow as tf
import numpy as np
from tensorflow import keras
# GRADED FUNCTION: house_model
# remove indention error please
def house_model(y_new):
    xs = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 9.0, 10.0,         11.0, 12.0, 13.0], dtype=float)
    ys = np.array([100.0, 150.0, 200.0, 250.0, 300.0, 350.0, 450.0, 500.0, 550.0,600.0, 650.0,700.0], dtype=float)
   
    model = tf.keras.Sequential([keras.layers.Dense(units=1,   input_shape=[1])])
    model.compile(optimizer='sgd',loss='mean_squared_error')
    model.fit(xs,ys,epochs=4000)
    
    return (model.predict(y_new)[0]+1) //100
# outside function
prediction = house_model([7.0])
print(prediction)

+ Recent posts